首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1530篇
  免费   194篇
  国内免费   367篇
化学   1311篇
晶体学   2篇
力学   21篇
数学   2篇
物理学   755篇
  2024年   10篇
  2023年   67篇
  2022年   99篇
  2021年   84篇
  2020年   165篇
  2019年   130篇
  2018年   136篇
  2017年   183篇
  2016年   180篇
  2015年   174篇
  2014年   195篇
  2013年   160篇
  2012年   179篇
  2011年   153篇
  2010年   61篇
  2009年   35篇
  2008年   13篇
  2007年   10篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   7篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
排序方式: 共有2091条查询结果,搜索用时 46 毫秒
71.
Density functional theory (DFT) based ab initio calculations were done to monitor the formaldehyde (CHOH) adsorptive behavior on pristine and Ni-decorated graphene sheet. Structural optimization indicates that the formaldehyde molecule is physisorbed on the pristine sheet via partly weak van der Waals attraction having the adsorption energy of about −15.7 kcal/mol. Metal decorated sheet is able to interact with the CHOH molecule, so that single Ni atoms prefer to bind strongly at the bridge site of graphene and each metal atom bound on sheet may adsorb up to four CHOH. The findings also show that the Ni decoration on graphene surface results in some changes in electronic properties of the sheet and its Eg is remained unchanged after adsorption of CHOH molecules. It is noteworthy to say that no bond cleavage was observed for the adsorption of CHOH on Ni-decorated graphene.  相似文献   
72.
The energetic stability, atomic and electronic structures of α-graphyne and its derivatives (α-GYs) with extended carbon chains were investigated by density functional (DF) calculations in this work. The studied α-GYs consist of hexagon carbon rings sharing their edges with carbon atoms N=1–10. The structure and energy analyses show that α-GYs with even-numbered carbon chains have alternating single and triple C–C bonds (polyyne), energetically more stable than those with odd-numbered carbon chains possessing continuous double C–C bonds (polycumulene). The calculated electronic structures indicate that α-GYs can be either metallic (odd N) or semiconductive (even N) depending on the parity of number of atoms on hexagon edges despite the edge length. The semiconducting α-graphyne derivatives are found to possess Dirac cones (DC) with small direct band gaps 2–40 meV and large electron velocities 0.554×106–0.671×106 m/s, 70–80% of that of graphene. Our DF studies suggest that introducing sp carbon atoms into the hexagon edges of graphene opens up an avenue to switch between metallic and DC electronic structures via tuning the parity of the number of hexagon edge atoms.  相似文献   
73.
In this study, the optical conductivity of substitutionary doped graphene is investigated in the presence of the Rashba spin orbit coupling (RSOC). Calculations have been performed within the coherent potential approximation (CPA) beyond the Dirac cone approximation. Results of the current study demonstrate that the optical conductivity is increased by increasing the RSOC strength. Meanwhile it was observed that the anisotropy of the band energy results in a considerable anisotropic optical conductivity (AOC) in monolayer graphene. The sign and magnitude of this anisotropic conductivity was shown to be controlled by the external field frequency. It was also shown that the Rashba interaction results in electron–hole asymmetry in monolayer graphene.  相似文献   
74.
In graphene in the presence of strain the elasticity theory metric naturally appears. However, this is not the one experienced by fermionic quasiparticles. Fermions propagate in curved space, whose metric is defined by expansion of the effective Hamiltonian near the topologically protected Fermi point. We discuss relation between both types of metric for different parametrizations of graphene surface. Next, we extend our consideration to the case, when the dislocations are present. We consider the situation, when the deformation is described by elasticity theory and calculate both torsion and emergent magnetic field carried by the dislocation. The dislocation carries singular torsion in addition to the quantized flux of emergent magnetic field. Both may be observed in the scattering of quasiparticles on the dislocation. Emergent magnetic field flux manifests itself in the Aharonov–Bohm effect while the torsion singularity results in Stodolsky effect.  相似文献   
75.
通过非平衡态分子动力学方法,研究了锯齿形石墨烯纳米带中掺杂原子硼的两种不同位置排列(三角形硼掺杂和平行硼掺杂)对热导率和热整流的影响并从理论上分析了其变化的原因。研究表明这两种硼掺杂模型在不同温度下导致石墨烯纳米带热导率大约54%-63%的下降;同时发现平行硼掺杂结构对热传递的抑制作用强于三角形硼掺杂结构;硼掺杂结构降低热导率的作用随着温度的升高逐渐减小;三角形硼掺杂结构两个方向上的热导率值具有较大差异,这种结构下的热整流随着温度的上升呈现减弱的趋势;而平行硼掺杂结构两个方向上的热导率值近乎相等,热整流现象表现不明显.  相似文献   
76.
Sublimated graphene grown on SiC is an attractive material for scientific investigations. Nevertheless the self limiting process on the Si face and its sensitivity to the surface quality of the SiC substrates may be unfavourable for later microelectronic processes. On the other hand, chemical vapor deposited (CVD) graphene does not posses such disadvantages, so further experimental investigation is needed. In this paper CVD grown graphene on 6H-SiC (0 0 0 1) substrate was investigated using scanning probe microscopy (SPM). Electrical properties of graphene were characterized with the use of: scanning tunnelling microscopy, conductive atomic force microscopy (C-AFM) with locally performed C-AFM current–voltage measurements and Kelvin probe force microscopy (KPFM). Based on the contact potential difference data from the KPFM measurements, the work function of graphene was estimated. We observed conductance variations not only on structural edges, existing surface corrugations or accidental bilayers, but also on a flat graphene surface.  相似文献   
77.
Graphene oxide is a two-dimensional carbon nanomaterial that has risen to prominence over the last decade as graphenes water-dispersible counterpart. This key feature offers tremendous potential in the formation of waterborne hybrid materials, coatings, membranes and adsorbents that make use of its diverse surface chemistry and extraordinary surface area. However, the fundamental colloidal properties of graphene oxide remain incompletely understood, with conflicting reports on how the material's amphiphilic nature and adsorption at interfaces render it surfactant-like or particle-like in nature. In the present work, recent developments in understanding the bulk and interfacial colloidal properties of graphene oxide are explored in the context of its chemistry and system thermodynamics, giving insight into the fundamental question of whether its aqueous behaviour is most accurately described as particle-like, surfactant-like or indeed something entirely different.  相似文献   
78.
79.
《Physics letters. A》2020,384(9):126190
We propose a single-molecule electrical switches consisting of a photochromic dimethyldihydropyrene/cyclophanediene molecule sandwiched between two graphene electrodes and investigate the electronic transport by using density-functional theory and nonequilibrium Green's function methods. The “open” and “closed” isomers of the photochromic molecule are shown to have electrical switching behavior and negative differential resistance effect. Moreover, it is also found that the switching ratio between two different conductive states depends on the ambient temperature, and the device behaves as a stable electrical switch around room temperature, which is in agreement with a recent experimental study of another photochromic molecule diarylethene reported by Jia et al. (2016) [17].  相似文献   
80.
The steam-assistant heteroatoms of sulfur and phosphorus dual-doped graphene film fabricated via an ice-template and thermal-activation approach demonstrates an excellent pseudocapacitive behavior in flexible electrochemical capacitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号